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Abstract

This paper presents new methods designed for quantitative analysis of chemical shift perturbation NMR spectra.
The methods automatically trace the displacements of cross peaks between a perturbed test spectrum and the
reference spectrum (or among a series of titration spectra), and measure the changes of chemical shifts, heights,
and widths of the altered peaks. The methods are primary aimed at the 1H-15N HSQC spectra of relatively small
proteins (<15 kDa) assuming fast exchange between free and ligand-bound states on the chemical shift time
scale, or for comparing spectra of free and fully bound states in the slow exchange situation. Using the 1H-15N
HSQC spectra from a titration experiment of the 74-residue Pex13p SH3 domain with a Pex14p peptide ligand (14
residues, Kd =∼ 40µM), we demonstrate the scope and limits of our automatic peak tracing (APET) algorithm for
efficient scoring of high-throughput SAR by NMR type HSQC spectra, and progressive peak tracing (PROPET)
algorithm for detailed analysis of ligand titration spectra. Simulated spectra with low signal-to-noise ratios (S/N
ranged from 20 to 1) were used to demonstrate the reliability and reproducibility of the results when dealing with
poor quality spectra. These algorithms have been implemented in a new software module, FELIX-Autoscreen,
for streamlined processing, analysis and visualization of SAR by NMR and other high-throughput receptor/ligand
interaction experiments.

Abbreviations: APET – automated peak tracing; D – the score (or overall changes) of a test spectrum; d – chemical
shift displacement of a matched test peak; dr and dt – the contribution of an unmatched reference or test peak to D,
respectively; HSQC – heteronuclear single quantum correlation spectroscopy; HTS – high-throughput screening;
Kd – dissociation constant; max�H and max�N – the upper limit of 1H or 15N chemical shift displacement,
respectively; PROPET – progressive peak tracing; RI – the ratio of intensity level of the test spectrum vs. that of
the reference spectrum; S – similarity of peak shape; SAR by NMR – structure-activity relationships by nuclear
magnetic resonance.

Introduction

Chemical shift perturbation spectra are very com-
monly used to probe the structural and functional
changes of a molecule after a certain chemical or
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physical event, such as chemical reactions, solvation,
complexation, mutation, or binding to another mo-
lecule. The underlying rationale is that if the system
under study has been changed chemically or physic-
ally, the NMR peaks may change their location, line
shape, or disappear due to changed local chemical en-
vironment (see reviews by Otting, 1993; Pellecchia
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et al., 2000; Zuiderweg, 2002 and references therein).
Among the many possible techniques, 2D HSQC of
15N-labeled proteins (Bodenhausen et al., 1980; Bax
et al., 1990) has long been used in the studies of
protein-ligand binding events because of its high sens-
itivity to ligand interaction over a wide affinity range,
and its ability to provide residue-specific informa-
tion that helps map the binding site(s) on the protein.
This idea has been elaborated as the SAR by NMR
method for screening and designing high-affinity lig-
ands (Shuker et al., 1996; Hajduk et al., 1997). Lately,
chemical shift perturbation has also been used in the
study of protein-protein docking (McCoy and Wyss,
2000; Morelli et al., 2001, Fahmy and Wagner, 2002;
Dominguez et al., 2003; Clore and Schwieters, 2003).

The analysis of perturbation spectra is usually fo-
cused on the difference between the perturbed (called
test) and the non-perturbed (called reference) spec-
trum. Theoretically, the difference can be obtained by
directly subtracting the two spectra and then reading
the residual peaks. This is a common practice for 1D
spectra though rarely used for 2D. In a more soph-
isticated data analysis approach (Ross et al., 2000)
to evaluate the 2D 1H-15N HSQC spectra for high-
throughput screening (HTS), the cross peaks were
picked from the reference spectrum and used to define
the integration areas for the test spectra. For each
test spectrum, the integrations of data points from
these areas are compared with the corresponding ones
from the reference spectrum to calculate the similar-
ity (called ‘correlation coefficient’) between the test
and the reference spectrum. The changes of the in-
tegrals of a batch of test spectra were next subject
to statistical analysis to cluster the experiments into
groups that correspond to different binding sites or
corrupted experiments due to protein aggregations or
changes in sample conditions. Billeter et al. have re-
cently introduced a mathematical method, three-way
decomposition, in the analysis of a set of 1H-15N
HSQC spectra (Orekhov et al., 2001; Damberg et al.,
2002). In their application, the enumeration of the set
of 2D spectra constitutes the third dimension in ad-
dition to the 1H and 15N dimensions of the 1H-15N
HSQC spectra. It is demonstrated that the unchanged
and changed peaks can be identified as 1D peak shapes
along the 1H and 15N axes, and the change of the
shapes along the 3rd dimension can be used to identify
which of the spectra have been significantly affected.
Obviously, the result from either method is a rough
measure of how many peaks have shifted away or dis-
appeared from the original reference peak locations,

but none of them distinguishes between shifted or dis-
appeared peaks, or, more importantly, measures how
far peaks have shifted from their original locations.

In our opinion, it is more intuitive and chem-
ically meaningful to map the changed peaks to the
original reference peaks, and quantitatively measure
the changes in terms of chemical shifts (and peak
volumes or peak widths if they are useful). Obviously,
such results are the necessary starting point for many
of the studies summarized above, including the map-
ping of the binding site(s), determination of Kd, and
the study of protein-protein docking. In the case of
HTS, we also believe that such results constitute a
better input for further statistical analysis and hence
lead to more reliable clustering results. However, un-
less the test spectrum has been fully assigned using
other NMR experiments, peak mapping is usually te-
dious and error-prone because of noise, peak overlap,
and cross shifting. In manual analysis (e.g., Farmer
et al., 1996, Willamson et al., 1997), the test and ref-
erence spectra are overlaid and the unchanged peaks
are first identified. For each of the shifted peaks, in-
stead of trying to find its real origin, a test peak is
assigned to its nearest reference peak and the distance
is measured to define the ‘lower limit for chemical
shift changes’. Such nearest peak-based approach was
explicitly addressed and verified with assignment res-
ults (Williamson et al., 1997; Muskett et al., 1998). In
our experience, however, it is not a rigorous method
and may lead to error in some situations illustrated
in Figure 1. One way to clarify such ambiguity is to
use the titration spectra (e.g., Van Nuland et al., 1993;
Chen et al., 1993). The tracing of the peak move-
ment is more reliable since the displacement between
each titration step is smaller and hence less ambigu-
ous. It should also be noted that a human analyst can
easily avoid matching peaks to noise and match the
other peaks correctly in situations illustrated in Fig-
ure 1, based mainly on earlier experience with the
peak shapes. The pattern recognizing capability of a
computer program, usually done at subconscious level
by human, is of crucial importance for matching peaks
in a robust way.

Based on these considerations, we have developed
a software module, Autoscreen, in the FELIX en-
vironment (Kumar et al., 1998; Accelrys, 2002) to
automate the manual analysis tasks mentioned above.
To overcome the common practical difficulties, new
algorithms were devised to automatically optimize the
peak picking parameters, and to use peak shape for
robust peak matching. Our primary targets are 2D
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Figure 1. Common situations where the nearest peak-based approach may fail to find the correct matching between the reference peaks (in
solid contours) and test peaks (in dotted contours). The hypothetical reference peaks 1 and 2 are shifted to locations of the test peaks a and b,
respectively, in the test spectrum as indicated by the solid arrows. (A) If the peak mapping starts from peak 2, the closest test peak a will be
matched to it, and hence b will be matched to 1. This leads to an erroneous, sequence-dependent peak mapping shown as the dashed arrows.
(B) If a noise peak c appears closer to peak 1 than to a, the noise will be matched to 1 and hence a to 2, leaving b unmatched.

1H-15N HSQC spectra perturbed by protein-ligand in-
teractions in the fast exchange regime as usually is the
cases of HTS or conventional ligand titrations, or the
saturated spectra in the slow exchange limit. The scope
and limits of the methods are demonstrated by the
analysis of the 1H-15N HSQC spectra of the Pex14p
peptide bound Pex13p SH3 domain. Simulated spec-
tra with low signal-to-noise ratios (S/N ranged from
20 to 1) were used to demonstrate the reliability and
reproducibility of the results when dealing with poor
quality spectra.

Methods and algorithms

Mathematical consideration

Let the set of reference peaks picked from the ref-
erence spectrum be P = {p1, p2, . . . , pn}, and the
set of test peaks from the test spectrum be T =
{t1, t2, . . . , tm}. In terms of graph theory (Gross et al.,
1998), the relationship between P and T can be rep-
resented by a bipartite graph G = (P + T ,E), where
the vertex set P + T is the union of the two peak sets,
and the edge set E = {e1, e2, . . . , eq} includes the
mapping between the reference and test peaks (Fig-
ure 2). G is bipartite because the two incident vertices
of each e are from the separate sets P and T , not from
a common one. Each edge e = (p, t) is associated

Figure 2. Schematic illustration of the peak mapping problem for
chemical shift perturbation spectra. The solid circles represent the
reference peak set P , the dotted circles the test peak set T , and the
edges E the mapping between the matched reference and test peaks.
The reference peak marked by a cross represents an unmatched
reference peak. The test peak marked by a square represents an
unmatched test peak.

with a distance weight d , which is a measure of the
change of chemical shifts and peak shape from p to t .
For an unchanged peak, d = 0. For a peak that either
shifted its location or changed its line shape, d > 0. In
practice, it is not uncommon for some peaks to have
no match in the other peak set. Such unmatched peaks
usually include disappeared reference peaks or newly
emerged test peaks. Although there is no edge associ-
ated with such peaks, a weight dr or dt can be assigned
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to an unmatched reference or test peak, respectively,
to count for their contributions to the overall changes
of the spectra.

For chemical shift perturbation spectra, we define
the distance d between p and t to be the sum of the
weighted absolute chemical shift differences, �H and
�N , along the 1H and 15N dimension, respectively,
augmented by the change of peak shape:

d = (α�H + β�N)/S, (1)

where α and β are the weights of the 1H and 15N
chemical shifts respectively, used to compensate the
different chemical shift dispersions of 1H and 15N nuc-
lei. Normally α = 1 and β = 0.2. S is the similarity
of peak shapes of p and t , and has a value of 1.0 if
they are identical in shape or less than 1.0 if they are
different. In this way a chemical shift displacement is
enlarged if the peak shape is changed. S is defined as
the product of the similarities of their peak widths and
peak intensities:

S = SλH × SλN × SI, (2)

where SλH , the similarity of peak width along 1H di-
mension, is calculated based on the peak width of p,
λ

p
H, and that of t , λt

H, along the 1H dimension:

SλH =



λ
p
H

/
λt

H if λ
p
H ≤ λt

H,

λt
H

/
λ

p
H otherwise.

(3)

Analogously, SλN, the similarity of peak width along
the 15N dimension, is calculated based on the peak
width of p, λ

p
N, and that of t , λt

N, along the 15N
dimension:
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(4)

SI, the similarity of peak intensity, is calculated based
on the peak heights of p, Ip, and that of t , I t :

SI =



Ip
/
I t if Ip ≤ I t ,

I t
/
Ip otherwise.

(5)

Once the peak mapping is available, the difference
between the test and reference spectra can be obtained
by summing up the contributions of the matched peaks
and unmatched peaks as the following:

D =
∑

d +
∑

dr +
∑

dt . (6)

D is commonly used for scoring HTS experiments
where such ‘scores’ of the test spectra are used to

cluster the experiments into groups that correspond to
non-changed, possibly binding, and corrupted experi-
ments. For a more detailed analysis, it is often instruct-
ive to examine the displacements of the individual
peaks contributing to D.

Now the key is to obtain the mapping between the
test and reference peaks. Since normally the peak dis-
placements are small compared to the chemical shift
dispersion area, and the majority of the shifted peaks
have relatively small changes to their peak shape, we
can limit the possible matchings to only those pairs
that fulfill the following criteria:

�H ≤ max �H, (7)

�N ≤ max �N, and (8)

S ≥ min S, (9)

where max�H is the upper limit of the absolute dis-
placement of 1H chemical shift between p and t ,
max�N the upper limit of the absolute displacement
of 15N chemical shift, and minS the lower limit of
shape similarity.

The conditions in Equations 7–9 usually do not
guarantee a unique peak mapping. Instead, we have to
enumerate all the possible mappings and select the one
with the minimum D as the optimal peak mapping,
which constitutes the lower limit of the global change
of the whole spectrum. This is a typical combinator-
ial optimization problem and can be solved using the
systematic tree search methods or stochastic methods
(Lawler et al., 1985; Press et al., 1992).

Intelligent peak picking in the test spectra

We assume that a well-refined, usually assigned, peak
set from the reference spectrum is available before
analyzing the HTS or titration experiment. The peak
picking in the test spectra, however, should be done
on-the-fly during scoring. Hence the quality of the
test peaks is crucial to the subsequent analysis. We
have devised an algorithm that automatically adjusts
the pick area and threshold based on the quantity of
peaks and the quality of peak matching.

First a peak picking area is determined based on
the chemical shift dispersion of the reference peaks.
The area is the minimum rectangle that includes all the
reference peaks plus margins of max�H and max�N

in D1 and D2 dimensions, respectively. Starting from
an estimated initial threshold (calculated based on
some randomly picked data points), the test peaks are
picked. Next the peaks are examined and threshold is
adjusted according to the following rules:



495

1. If the number of test peaks is less than 1.1 times
of that of the reference peaks, lower the threshold.
This ensures that at least 10% more test peaks are
picked in order not to miss weak valid test peaks.

2. If the number of test peaks is greater than two times
of that of reference peaks, raise the threshold. This
ensures not too many peaks are picked.

3. Otherwise, for each reference peak, find its candid-
ate matches based on Equations 7–9. Note that the
peak intensities are not used at this stage when cal-
culating the peak shape similarity using Equation 2,
i.e., SI ≡ 1, because the test spectrum may have
different intensity level from that of the reference.
If over 25% of the reference peaks do not have a
candidate match, lower the threshold. Otherwise if
each reference peak has more than three candidates
on the average, raise the threshold. This aims to
tune the peak picking based on the quality of peak
mapping.

If the test peaks pass all the examinations, they are
accepted and the peak picking is completed. Otherwise
the threshold is adjusted accordingly. The maximum
number of iterations is set to seven.

Mapping test peaks to reference peaks

For each reference peak p, the nearby test peaks that
satisfy Equations 7–9 are considered possible candid-
ates of its match. The distance d between p and such
a candidate test peak, t , is calculated based on Equa-
tions 1–4, with the peak shape similarity considered. If
there are multiple candidates, they are sorted by their
d values and only the first four with the smallest d

are retained. Again, at this stage, the peak intensities
SI are not used in Equation 2 since the test spectrum
may have a different intensity level from the reference
spectrum.

In order to calibrate the test peak intensities, an
intensity ratio RI is calculated as follows:

RI =
∑

I p
/∑

I t, (10)

where
∑

I pis the sum of peak intensities of all refer-
ence peaks that have at least one candidate and

∑
I t

is the sum of peak intensities of the first candidate test
peak of those reference peaks.

Next, the peak intensities of all test peaks are cal-
ibrated by multiplying them by RI, and the list of
candidate matches is updated by including the peak in-
tensity in Equation 2. To guarantee that each reference
peak will have a match in the final result, a dummy

candidate with a distance dr is added to the candid-
ates for each reference peak. The remaining task is to
choose one candidate for each reference peak so that
D in Equation 6 is minimal. Note that a test peak can
be assigned to only one reference peak in the result-
ing peak mapping, although some efforts are used to
resolve overlapping test peaks as shown in the later
section.

As the first option, the classical depth-first tree
search algorithm (Gross et al., 1998) has been adopted
to enumerate all the possible mappings. The search
tree takes the first candidate of the first reference peak
as the root, and takes the first, non-matched candid-
ate of the second reference peaks as the next level of
the search tree, and so on, until the nth (n is the total
number of reference peaks) reference peak is reached.
The selection of the matches constitutes one possible
peak mapping and the score D is calculated based on
Equation 6. Next it backtracks to the (n − 1)th ref-
erence peak and continues the search so that the next
candidate of the nth reference peak is selected as the
match. If the ith (1 < i ≤ n) test peak is exhausted,
i.e., all its candidates have been selected, it backtracks
to a higher level, (i − 1)th reference peak, and select
the next available candidate, and go on searching the
new subtree. Each time a new mapping is obtained,
the new score D′ is compared with the current D.
If D′ < D, then the new mapping is retained and
D is replaced by D′; otherwise the new mapping is
discarded and D remains unchanged. The process is
complete when it backtracks to the last candidate of
the first reference peak. The retained mapping and its
corresponding score D are returned as the result.

Two heuristics are devised to reduce the search
space and hence enhance the efficiency of search. In
the first heuristic, the search tree is divided into as
many independent subtrees as possible. This is done
by first excluding those reference peaks with unam-
biguous matching test peaks, and then separating the
remaining reference peaks into groups so that any two
reference peaks from different groups do not share a
candidate, and hence the search can be done inde-
pendently for each group. The second heuristic takes
advantage of the fact that the search space is partially
ordered because the candidates of each reference peak
have been sorted based on their distance d . Since nor-
mally the majority of the displaced peaks remain the
nearest or the second nearest to their original loca-
tions, a small ‘average search breadth’ can be used to
further limit the search space. (See Peng et al., 1995
for details of a similar method devised to quickly gen-
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erate organic molecules from NMR-derived structural
fragments).

The increased spectral complexity of bigger pro-
teins may undermine the effectiveness of the above
heuristics. To achieve a near-optimal matching in af-
fordable computational time for complicated spectra,
we also adapted the simulated annealing algorithm to
the peak matching problem. In terms of simulated an-
nealing (Kirkpatrick et al., 1983; Press et al., 1992),
each possible peak mapping is a configuration with
an energy D calculated according to Equation 6. In
our annealing schedule, the initial temperature T is set
to 10dr, which is considerably larger than the largest
change of D when exchanging a pair of matches.
The annealing proceeds downward in multiplicative
steps each amounting to a 10 percent decrease in T .
Each new value of T is held constant for 100n re-
configurations, or for 10n successful reconfigurations,
whichever comes first. If T has been decreased for 100
times, or if no successful reduction of D is accom-
plished for a certain T value, the process is stopped
and the current configuration is used as the result-
ant mapping. Such an algorithm is normally much
faster than the tree search algorithm hence in this case
the two heuristics devised for the tree search are not
needed.

Handling the unmatched reference peaks

In the resultant peak mapping, an unmatched reference
peak is represented as one matched to a dummy test
peak with a distance of dr. There are many possible
reasons for a reference peak not to be matched. For
example, the peak vanishes in the test spectrum be-
cause of considerable change of relaxation time, or the
peak is displaced greater than max�H or max�N and
is hence not matched. More often two well-separated
peaks (or overlapping ones but identified from other
experiments) in the reference spectrum become (or
remain) partially overlapped in the test spectrum and
hence only one test peak is picked, as illustrated in
Figure 3.

In order to handle a case like Figure 3, we use the
local optimization method of the FELIX program (Ac-
celrys, 2002) to unravel the hidden test peaks. First,
the unmatched reference peaks, together with matched
ones that lie closer than four times the peak width to
them, are fitted to the corresponding portion of the
test spectrum. Then, the optimized peaks are matched
to the corresponding reference peaks if they meet the
criteria in Equations 7–9. If this is successful, their

Figure 3. Resolving overlapped test peaks by fitting control peaks
to the test spectrum. The well separated control peaks 1 and 2 be-
come overlapped in the test spectrum, hence only the peak top a is
picked and matched to 2, while 1 remains unmatched. After fitting
1 and 2 to the envelope, the resolved peaks (dotted lines) b and a′
are matched to 1 and 2, respectively.

contributions are calculated according to Equation 1.
In this way the originally matched test peak may also
be refined (e.g., the matching of peak 2 to a′ instead
of a in Figure 3). Otherwise, such a reference peak
remains unmatched and contributes dr to the score D

in Equation 6.
Note the value of dr must be set significantly larger

than the value d of a normal peak so that a dummy
candidate is only selected when other candidates are
not available. However, the value of dr should not be
too big in order to prevent noise peaks from being
matched to the reference peaks. Empirically we set
the value of dr to the upper boundary of a detectable
peak displacement based on the values of max�H or
max�N , i.e., dr = max �H + max �N × 0.2. In
the subsequent application, 0.18 and 1.1 are used for
max�H or max�N , respectively, and 0.4 is hence
used for dr. Internally the program uses 1.5dr, i.e. 0.6
in this case, for peak mapping.

Handling unmatched test peaks

Since we always pick over 10% more test peaks than
reference peaks, many test peaks remain unmatched.
In our experience, most of the unmatched test peaks
are noise, but they can also be real peaks including the
newly emerged ones due to change of sample condi-
tions, the ones corresponding to the reference peaks
that one fails to observe in the reference spectrum
because of overlap or other reasons, or the ones that
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the program fails to match because their displacements
exceed the search range defined in Equations 7 and 8.

We use the peak shape to distinguish the genuine
unmatched test peaks from noise. With the assumption
that all matched test peaks are real peaks, statistical
analysis is performed on their peak widths and intens-
ities. The average values (λ̄H, λN, and Ī ) and standard
deviations (σH, σN, and σI) of the peak widths along
the 1H dimension, the peak widths along the 15N di-
mension, and peak heights, respectively, are obtained.
An unmatched test peak is accepted as a real peak if
its peak widths λH and λN and peak height I meet the
following conditions:

λH − xσH ≤ λH ≤ λH + xσH, (11)

λN − xσN ≤ λN ≤ λN + xσN, and (12)

Ī − xσI ≤ I ≤ Ī + xσI, (13)

where x is a user-defined coefficient (e.g., 1.2 to 2.0).
Each of the identified unmatched test peaks con-

tributes a value dt to the score of the experiment
according to Equation 6. Normally we use dt = 0.2,
which is smaller than the contribution of an unmatched
reference peak (e.g., dr = 0.4) based on the fact that
reference peaks are usually well-refined during reson-
ance assignment while the test peaks are automatically
picked and are usually less reliable.

PROPET: Progressive peak tracing in titration
spectra

The automatic peak tracing (APET) algorithms dis-
cussed above are especially suited for automatically
analyzing the HTS experimental data, where each
ligand (or a groups of ligands) has only one test spec-
trum. On the other hand, if multi-point titration data
is available, all the test spectra with different ligand
concentrations should be evaluated against the refer-
ence spectrum to follow the titration curve. Moreover,
the relatively small peak displacements between the
individual test spectra can usually be used to resolve
ambiguous peak mapping. For that purpose, the APET
algorithms are extended to deal with titration spectra
by progressive peak tracing (PROPET).

Instead of directly evaluating each titration spectra
against the reference, PROPET evaluates each titration
spectrum against its immediate predecessor in the ti-
tration series. It starts with the reference spectrum, and
analyzes the series of test spectra along the titration
curve sequentially. If it is the first test spectrum, the
procedure is essentially the same as APET, i.e., the test

peaks are automatically picked and then mapped to
the reference peaks as described in the above sections.
This establishes a mapping M(T1, P) between the test
peaks T1 and the reference peaks P , and the displace-
ment between each matched peak pair, if shifted, is
measured. Next the second test spectrum is evaluated
against the first test spectrum by taking the first test
spectrum as a reference, and a mapping between the
test peaks T2 (from the second test spectrum) and T1
is established as M(T2, T1). By replacing T1 with their
matched reference peaks in P , a mapping between the
second test spectrum and the reference spectrum is es-
tablished as M(T2, P), and the displacements of the
test peaks referring to the reference peaks are meas-
ured again. The same procedure goes on until the last
test spectrum is evaluated. The results are tabulated
as the chemical shift changes for each reference peak
along the ligand concentration dimension.

Experimental

FELIX-Autoscreen

The APET and PROPET algorithms are coded in C
and C++ and implemented as a new module, Auto-
screen, in the FELIX program (Accelrys, 2002). To
use Autoscreen, the reference and test spectra files,
either in time-domain or frequency-domain can be
entered to Autoscreen and constitute a project. If in
time-domain, the reference spectrum is first processed
interactively. The parameters used for processing the
reference spectrum are remembered by Autoscreen
and can be automatically applied to the test spectra
later. If APET is chosen to analyze a batch of HTS
spectra, all the test spectra are processed, peak picked,
and evaluated against the reference peaks automatic-
ally without user interaction. If PROPET is chosen to
analyze titration spectra, the procedure is carried out
in a more interactive way so that, for each point in
the titration series, the user can choose the proceeding
point to use, verify the peak mapping result and correct
wrong matches if necessary. In either case, the results
can be presented as histograms or tables of scores for
all experiments, or chemical shift changes for an in-
dividual spectrum. A test spectrum can be overlaid on
the reference spectrum as contours of different colors,
and arrows be displayed to indicate the significantly
shifted peaks. The arrows can be removed or changed
interactively if corrections are needed. The multiple
spectra overlay allows up to 12 different spectra be
overlaid at the same time.
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Other routines are provided in FELIX to cluster a
batch of HTS experiments into different groups based
on the resulting peaks displacements, to export the
peak displacement results for Kd calculation and col-
oring the perturbed residues on the 3D structure of the
protein.

NMR Experiments

The full titration curve for a Pex14p peptide ligand
(14 amino acids) to the Pex13p SH3 domain (amino
acids 303–373 plus amino acids −3 - −1 from proteo-
lytic cleavage) (Douangamath et al., 2002) is used to
demonstrate the effectiveness of our algorithms. Back-
bone resonance assignments of the SH3 domain were
obtained using standard triple resonance experiments
(Sattler et al., 1999) recorded on a 15N,13C-labeled
Pex13 SH3 domain. Chemical shift changes during
the NMR titrations were monitored in 2D sensitivity
enhanced 1H-15N HSQC experiments with 512 and
128 complex points in t2 and t1, respectively, recor-
ded with 16 scans on 15N-labeled SH3 domain at
600 MHz. The SH3 domain had an initial concentra-
tion of 0.5 mM in a volume of 600 ul. The peptide
ligand Pex14p (30 mM) was added to a final concen-
tration of 1.0 mM, such that the total change of the
sample volume was less than 5%. The full titration
curve consisted of seven 1H-15N HSQC spectra recor-
ded at different ligand concentrations ranging from 0.1
to 1.0 mM, as shown in Table 1.

Results and discussion

Spectral data processing and simulation

The 1H-15N HSQC spectra were processed on a DELL
personal computer (CPU: AMD Athlon™ 1G Hz,
RAM: 256 Mbyte) using the FELIX 2002 software.
The reference spectrum together with the seven test
spectra were organized as an Autoscreen project. The
reference spectrum was first zero-filled and processed
to a data matrix of 1024 × 512 points. The matrix
was automatically phase corrected using the PAMPAS
method (Dzakula, 2000), baseline corrected using the
Facelift method (Chylla and Markley, 1993), and re-
versed in D2 dimension. The spectrum was referenced
to match the previous assignment results by setting the
cross peak (G357 in Figure 4) with the highest 15N fre-
quency as (8.15, 107.47) ppm. The 65 assigned amide
peaks were imported and displayed on the reference
spectrum. Thirteen unassigned peaks were manually

picked. This led to a total of 78 peaks, including
two negative peaks. Peaks were fitted to the reference
spectrum with peak center optimized first, and next
with peak center, width and volume optimized for two
times. A few peaks lying in the overlapping areas were
given abnormal peak widths and were then manually
corrected. The total 78 optimized peaks were used as
the reference peak set for the subsequent analysis.

The seven test spectra were processed automatic-
ally using the same parameters as used to process the
reference spectra. The S/N ratio of these spectra is
about 120 in the fingerprint area.

For the subsequent test, a series of low S/N ratio
spectra were synthesized for the Reference, Test1, and
Test7 by adding random noise with various intensity
levels. Starting from an experimental spectrum, the
highest well-resolved peak in the fingerprint area was
picked and its height, I0, was measured. The S/N ratio
was then calculated as 2.5*I0 divided by the peak-to-
peak noise amplitude (Martin et al., 1980). For a target
S/N ratio random noise was added to the entire spec-
trum to lower the S/N to the desired value. For each of
the three original spectra, 20 spectra were synthesized
with a S/N ratio ranging from 20 to 1.

APET analysis of the saturated test spectrum Test7

The last point, Test7, of the titration curve was evalu-
ated directly against the reference spectrum to mimic
a HTS case where usually only one test spectrum is
available for each ligand. Based on the location of the
reference peaks, the program limited the peak picking
area to the fingerprint area. The peak picking threshold
was automatically adjusted twice and 117 peaks were
picked from Test7. All test peaks falling closer than
(max�H = 0.18, max�N = 1.10) ppm to a ref-
erence peak, as well as sharing a similarity of peak
shape S > 0.01, were taken as the candidate matches
of the reference peak. The peak width and peak heights
(calibrated by a ratio of RI = 1.91, see Equation 10)
were used to compute the peak shape similarity and
to augment the chemical shift distance between two
matched peaks (Equations 1–5). For an unmatched ref-
erence peak, a ‘distance’ of dr = 0.4 was assigned.
Unmatched test peaks were filtered based on Equa-
tions 11–13 with x = 1.8 and each contributed dt =
0.2 to D. The tree search method was used to find the
peak mapping with the lowest score D (Equation 6).

The analysis took less than a second to complete.
The results of peak mapping and displacement identi-
fication are illustrated in Figure 4 and some crowded
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Table 1. Peak displacements [ppm] and shape similarities from the titration experiments of Pex13p SH3 domain
(0.5 mM) with the Pex14p peptide (0.1–1.0 mM)a

Titration experiments and [Pex14p] in mM

Peak Assign- Test1 Test2 Test3 Test4 Test5 Test6 Test7 (d and Sc)

IDb mentb (0.1) (0.2) (0.4) (0.5) (0.6) (0.75) (1.0)

2 Asp304 –d –d 0.45 0.48 0.49 0.51 0.54 0.58

14 Phe317 0.08 0.13 0.16 0.18 0.18 0.18 0.19 0.72

18 Glu323 0.12 0.19 0.26 0.26 0.27 0.27 0.27 0.37

19 Met324 0.0 0.12 0.15 0.18 0.19 0.18 0.19 0.44

23 Leu328 0.12 0.20 0.27 0.28 0.28 0.30 0.30 0.83

34 Lys339 0.06 0.14 0.17 0.18 0.18 0.18 0.18 0.71

42 Asp348 0.08 0.15 0.19 0.20 0.20 0.21 0.21 0.61

43 Trp349 0.11 0.17 0.22 0.22 0.25 0.25 0.25 0.69

55 Ile362 –d 0.43 0.53 0.55 0.57 0.59 0.60 0.81

59 Tyr366 0.11 0.21 0.27 0.28 0.28 0.31 0.31 0.59

60 Ile367 0.14 0.23 0.30 0.31 0.33 0.34 0.34 0.77

73 (7.06, 113.4) 0.26 0.25 0.32 0.33 0.33 0.34 0.34 0.30

aOnly matched peaks with displacements greater than 0.17 ppm in Test7 are shown. Displacements are calculated
according to Equation 1 with α = 1, β = 0.2 and S ≡ 1. Peak similarities are shown only for Test7.
bThe peak assignments (or peak IDs for unassigned peaks) correspond to the peak labels in Figures 4–5.
cPeak similarities S are calculated according to Equation 2 and are not included in the peak displacements. Note
the peak heights have been calibrated using RI = 1.91 based on Equation 10.
dPeaks only visible at very low contour levels.

areas are detailed in Figure 5. Among the 78 reference
peaks, 70 were matched to a picked test peak. Among
the 70 matches 47 pairs had d > 0.1 and are connec-
ted by green arrows. The remaining 8 reference peaks
were identified as unmatched peaks (marked by green
crosses). Moreover, 5 test peaks were identified as un-
matched test peaks (marked by green boxes). Since
the chemical shift changes are our main interest, we
chose to use the peak shape only during peak map-
ping but not to include the change of peak shape while
calculating the score D (i.e., D is recalculated with
S ≡ 1 in Equation 1 after the peak mapping). The
peak shape similarities of the matched peaks are lis-
ted separately (See Table 1). The sum of the peak
displacements of matched peaks was 5.53, and un-
matched reference peaks and test peaks contributed
0.4 or 0.2 each, respectively, giving to a total score
of 9.73.

It is noteworthy that none of the reference peaks
are matched to any noise peak, although around 30
more peaks (mostly noise) were picked. Remarkably,
those spurious noise peaks were successfully filtered
from the unmatched test peaks, leaving only the 5 le-
gitimate ones (marked in green boxes). This shows
that the use of the peak shape similarities makes
the peak matching more robust. As listed in the last
column of Table 1, the shape similarities are mostly

bigger than 0.5. On the other hand, a noise peak,
which usually has very different peak intensity and
peak widths, typically has a similarity much smaller
than 0.01 and hence has a very small chance of being
chosen as the final match to a reference peak.

It is also noted that the fitting of unmatched refer-
ences to the test spectrum worked well for the over-
lapped peaks D346 and E309 (Figure 5A). Without
this function D346 would be claimed as unmatched
reference peak since their corresponding test peaks are
not resolved in the test spectrum either, leaving only
one test peak picked for them by the program. This
function, however, did not work successfully for R345
(Figure 5A) because the program did not properly fit
the unmatched reference peak R345 to the shoulder
peak (pointed to by the red arrow). The peak matches
in the crowded area (Figure 5A) show that the global
optimization worked well in tracing the cross shif-
ted peaks such as I336 and W349, M-1 and K329.
The displacements of these peaks are analogous to the
situation illustrated in Figure 1A and would be hard
to resolve using the nearest peak-based method. Al-
though some of the matches are further corrected in the
following PROPET analysis, we believe these results
are close to what a human analyst could achieve based
solely on the Test7 and reference spectra.
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Figure 4. Overlay view of Test7 (violet and cyan contours for positive and negative peaks, respectively) and Reference (black and yellow for
positive and negative peaks, respectively) 1H-15N HSQC spectra of Pex13p SH3 domain. The green arrows show the peak displacements with
d > 0.15 (Equation 1, whereas S ≡ 1) resulting from the APET analysis of Test7 vs. Reference. The peaks marked by the green crosses or
green boxes are unmatched reference peaks or unmatched test peaks, respectively, from the APET analysis. The red arrows show the peak
displacements that were corrected by the PROPET analysis of all titration experiments. The purple arrows show the three pairs of peaks that
the program failed to match. Peaks are marked by their assignments or, if not assigned by their peak IDs. Areas in the red dashed boxes are
detailed in Figure 5.

Reproducibility study of APET results

In real-world HTS, the spectral quality may vary from
sample to sample, and the interactive verification and
correction of individual peak mapping is not possible.
Hence the reproducibility of the resulting D values is

of essential importance for reliably profiling experi-
ments. There are two main sources that may lead to
the fluctuation of the D value. The first is the inherent
stochastic nature of our methods – the estimation of
the initial peak picking threshold is of random nature,
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Figure 5. Multiple overlay view of some significantly displaced areas in the titration 1H-15N HSQC experiments of Pex13p SH3 domain with
Pex14p peptide. For clarity, only selected experiments are shown and up to two contours are drawn for each experiment in the designated color.
The experiment names and their corresponding colors are indicated in each box. The analysis results are shown in the same way as in Figure 4.
Black crosses are used to indicate the centers of the some reference peaks in crowded areas.

and the optional simulated annealing method for peak
mapping is a stochastic method. The second is the
impact of poor spectral quality on the results.

To test the variation of the D values due to our
stochastic algorithms, we repeated the APET ana-
lysis of Test7 for 10 times with the tree search or the
simulated annealing option. Although the number of
picked test peaks varied from 96 to 153, the tree search
method gave constant results (5.53 for the matched
peaks, and 8 unmatched reference peaks) except that
number of unmatched test peaks varied from 4 to 5,
hence D ranged from 9.53 to 9.73 with an average of
9.60 and a standard deviation of 0.10. The simulated
annealing, however, resulted in more fluctuation with
D values ranging from 8.97 to 10.03, with an average
D value of 9.59 and standard deviation of 0.40. As
expected, simulated annealing gave more variation in
the results than the tree search method.

To test the reproducibility of the D values on spec-
tra with low S/N ratio, we used the Reference, Test1,
and Test7 spectra (which mimic a non-binding, par-
tially binding, and fully binding case, respectively)
with artificially lowered S/N ratio ranging from 20 to
1 and repeated the APET analysis with the identical
parameters as in the previous APET analysis section,
except that x = 1.2 was used to give a more rigorous
filtering of unmatched test peaks (see Equations 11–
13). As illustrated in Figure 6A, in the S/N range of 20
to as low as 5, the resulting average D values are 0.67,
5.45, and 8.51, with standard deviation of 0.48, 0.49
and 0.68, respectively. These results are separated well
enough to reliably profile the three samples. A study
of the peak mapping in these spectra found that, while
the majority of the matched peaks remained remark-
ably consistent with the results of the experimental
spectra, the numbers of unmatched reference and test
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Figure 6. D values of the APET analysis on selected spectra with various artificially lowered S/N ratios. (A) D values include the contribution
from both matched peaks and unmatched peaks. (B) D values include only the contribution of matched peaks. Diamonds denote the Reference
experiment, mimicking a non-binding experiment. Squares denote the Test1 experiment, mimicking a partially binding experiment. Triangles
denote the Test7 experiment, mimicking a fully binding experiment.

peaks varied considerably. As illustrated in Figure 6B,
if the contribution of the unmatched peaks is excluded,
the resulting D scores show much smaller standard
deviations of 0.20, 0.34, and 0.47, respectively, in
the same range of S/N ratios. The reasons are that as
the spectrum becomes more noisy, there is a greater
chance that artifacts are picked as test peaks, and the
peak fitting for unmatched reference peaks becomes
less reliable.

PROPET analysis of the whole titration curve

The first titration point, Test1, was evaluated against
the reference spectrum with the same parameters as
those used for the APET analysis of Test7, except
that the search range was shrunk to max�H = 0.10
and max�N = 0.80 ppm since smaller peak dis-
placements were expected. Of the total 78 reference
peaks 70 were matched to a test peak, and 8 remain
unmatched. The peak matchings were inspected and
verified manually by browsing through each of them
and a few matches were corrected interactively.

Next the second titration point, Test2, was evalu-
ated against the preceding point, Test1, with the same
parameters, and the results were verified before pro-
ceeding to the next titration point. Similar procedures
were taken sequentially along the whole titration curve
until the last point, Test7, was analyzed. The peak
mapping obtained by this progressive analysis is also
shown in Figure 4, with only the 11 different peak
matches being illustrated as red arrows. These differ-
ent peak matches are detailed in Figure 5 with selected
multiple spectral contours overlaid in different colors.

It can be seen that by following the stepwise
peak shifts, the PROPET analysis clarified many peak
matchings which were not possible in the APET ana-
lysis. Figures 5B and 5C show two such typical
examples. In Figure 5B, peaks M324 and 73 were
originally matched to two closer test peaks (the green
arrows). By following the intermediate peaks during
the PROPET analysis, their matches were switched
and bigger displacements were assigned to both of
them (the red arrows). In Figure 5C, peak K340 was
originally identified as an unmatched peak (marked by
a green cross) and the test peak close to it was matched
to peak E323 (green arrow). The PROPET analysis
showed that E323 was actually shifted to exactly the
same location as D316 (which did not shift). The other
test peak was hence matched to K340 (red line).

By scrutinizing the multi-spectra overlay display
around the unmatched peaks, the unmatched refer-
ence peaks D304 and I362 could be unambiguously
matched to two of the unmatched test peak (purple
arrows in Figures 4 and 5C). These matches were not
found during the APET analysis because their dis-
placements (�H = 0.47 ppm for D304 and �N =
2.54 ppm for I362) exceed the used search range
(max�H = 0.18 ppm, max�N = 1.10 ppm). If the
search range was extended to cover their shifts, they
would be properly matched. However, the tree search
algorithm would be significantly slowed down since
the search space is enlarged for each peak. In that case,
it would be better to adopt the simulated annealing
option for the search. It should be noted, however,
that missing such peak matches constitutes little im-
pact upon the purpose of APET analysis, since all the
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relevant peaks are recognized as unmatched reference
or test peaks and each of them contributes a reasonable
contribution to the score D.

The afore-mentioned two peak pairs were not
matched by PROPET either because in the first ti-
tration experiment Test1, none of them showed a
recognizable test peak due to intermediate exchange.
It should be noted that the PROPET analysis does not
have the capability to correct the peak tracking retro-
spectively, For that reason, it is recommended to verify
and correct the peak mapping at each step manually.
Sometimes one even needs to go back to correct a
match from the analysis of a previous titration point.
An interesting example is the shift of the two partially
overlapping peaks M-1 and D348 in Figure 5A. Dur-
ing the PROPET analysis of the first titration point,
Test1, they were matched to the two red Test1 peaks
a and b, respectively. However, those matches, when
relayed to the relevant test peaks in the subsequent
titration points, would lead to deviation from the ori-
ginal peak shifting direction (see the green dashed line
from peak M-1, the other line not shown). On the
contrary, if M-1 and D348 are switched, the displace-
ment vectors (the two red arrows starting from M-1
and D348) fit well with the centers of the intermediate
peaks. Hence we corrected the matches in Test1 and
re-analyzed the other experiments so that the correct
trajectory was followed.

Figure 5D shows an example where even a titration
experiment may not resolve the matching unambigu-
ously. Both APET and PROPET analyses did not find
a match for the reference peak Y361. By carefully
inspecting the multi-spectrum overlay we found that
one of the spectra, Test3, showed a shoulder peak
(the green contours marked by a black arrow). This
shoulder peak appears to be an intermediate peak that
supports the proposal that Y361 shifted to exactly the
same place as peak T354 did (illustrated as the purple
arrow). The significantly raised peak height of the
resulting test peak is another piece of supporting evid-
ence. However, more exclusive experimental evidence
(e.g. by changing the sampling condition to separate
the peaks, or by using other experimental techniques
to get the resonance assignment of Test7) is needed to
draw an unambiguous conclusion in this case.

The step-wise chemical shift displacements of
some of the significantly perturbed peaks (d > 0.17
in Test7) are listed in Table 1. From such a list it is
straightforward to map the binding sites from the PDB
structure of the protein and calculate the Kd of the lig-

and binding, as has been described by Douangamath
et al. (2002).

Conclusion

In this paper we presented a suite of algorithms de-
signed for quantitative evaluation of chemical shift
perturbation spectra by tracing the peak displace-
ments. Compared to other methods, this approach is
more intuitive and gives more complete and detailed
results such as which cross peaks have changed and
how much they have changed. In order to match peaks
reliably and efficiently, we developed novel algorithms
that automatically optimize the peak picking area and
threshold to guarantee an appropriate set of test peaks
are picked, and use the similarity of peak shape to
enhance the matching of displaced peaks between dif-
ferent spectra. Based on a rigorous definition of the
measure of difference between a perturbed spectrum
and the reference spectrum, we adapted the classic
combinatorial optimization methods, tree search and
simulated annealing, to search the peak mapping that
corresponds to a global minimum of the spectral dif-
ference. We also presented methods that deal with the
disappeared and emerged peaks, by fitting unmatched
reference peaks to the test spectrum and filtering un-
matched test peaks based on the statistics of peak
shapes. It is demonstrated that, even for titration of
a peptide ligand which introduces far more chem-
ical shift perturbations than in typical SAR by NMR
type data, the APET algorithms can quickly trace the
changed peaks with an accuracy that is close to that of
a human analyst. For protein-ligand titration spectra,
it is shown that the elaborated PROPET algorithms
monitor the peak displacements in a more reliable
way by following the stepwise peak movements along
the titration curve. Furthermore, it is worth mention-
ing that the tools provided by our program, such as
those for overlay display of multiple spectra, inter-
active correction of peak mapping and displacements,
and automatic bookkeeping of such results in both
database and spreadsheets, are very useful for a hu-
man analyst especially when dealing with complicated
spectra.

We also note that the PROPET algorithms can be
further improved by tracking the peak movements not
only prospectively but also retrospectively. A relat-
ively straightforward improvement is to check whether
the displacements corresponding to the same peak
have roughly the same directions. A more sophistic-
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ated improvement is to choose the displacements by
checking if their distances can be fit to the expected
mathematical curve along the titration trajectory (e.g.,
a hyperbolic function when a binary binding event is
expected). Moreover, a more reliable algorithm for
peak fitting is needed to match a reference peak to a
partially overlapping test peak such as peak R345 in
Figure 5A. Finally, the use of peak shape information
not only makes the peak mapping more robust to noise
and signal overlap, but also provides an opportunity to
generalize our program for evaluating other types of
spectral changes. An example is the transferred NOE
spectroscopy (Moore, 1999), where changes of peak
intensities instead of peak locations are monitored.
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